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1. PMMA tensile creep data extrapolated to Ny = N(S, e, tof). Stress S = S(Lg) in
MPa: S;=3.45,S2=10,83=30 T;=293K, Ty =333 K. Elastic strain e, =
eo(S)= S/ Eg(4 K): eg] =0.000417, eyp = 0.00121, g3 = 0.00363. AHin"
kcal / mol in the t-T intervals: A, 4kcal /mol; B, 8; C, 12; D, 175, E, 20; F, 24
tef = 10-13s 2
Arrehnius plot with log(t / tef) = AH / (4.56T), ter= 10713 s. Enhanced slope
segments (associated with AH in kcal / mol) are related through common t-T
intervals to corresponding constant strain segments in Fig. 1. A, 4 kcal / mol,
B,8; C,12, D, 175; E, 20; F, 24; G, 30, H, 40. PMMA glass transition
temperature Tg =378 K. T =293 K and T2 =333 K. Along the 1000/T axis,
where AH = 0, ey(S) is a constant for each S(L,). 3
Relation of PMMA tensile creep strain to activation energy corresponding to
common t-T intervals (in Figs. 1 and 2). AH = *nlog(e/ey). The slope *n
decreases as S = S(L) increases. S in MPa: S) =3.45 MPa, S5 =10, S3 =30.
Each letter, A through H, indicates the set of strains associated with a AH.
Note that the t-T intervals, where e and AH are constant (in Figs. 1 and 2),
degenerate to a single point. 4
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INTRODUCTION

With dynamic techniques, Read (1) showed a distribution of relaxation times
associated with a distribution of activation energies. These distributions were associated
with the Arrhenius equation for glassy state temperatures and Read (1) concluded " ... that
the assumption of a single activation energy which underlies the frequency-temperature
superposition principle is invalid in the case of B-relaxation in PMMA.". Likewise
McCrum et al. (2) concluded that a constant activation energy AH associated with all
components of the relaxation time distribution is not unequivocally supportable by time-
temperature superposition. The present note indicates that the convergence of two
PMMA tensile creep curves represented by two temperatures and the same dead load L
precludes the use of time-temperature superposition for obtaining activation energies of
creep strain. It further associates the total engineering creep straine = e(Ly . T. t)ona
loge-logt plot, with the activation energy AH = AH(t ,T) through the Arrhenius equation.

log(t/ tom) = log(t/ tef) = AH / (4.56T) Equation la

where 4.56 = 2.303R. Ty, (in the notation of Read (1)) is associated with "the reciprocal
molecular oscillation frequency" as is t.r the time.at the convergence point Ny =

N(Lo.€o-tcf ) of the set of experimental creep curves. Eq. la holds if 1o = tef (takenin

this report as similar to 10~ 3 5 as stated in Reference 3) and is "constant for ail
processes” (1).

References 4 and 5 showed with wave velocity experiments starting at 4 K for a
collection of thermoplastics, that a plot of dynamic modulus E versus T has one of two
paths depending on the thermoplastic. For semicrystalline plastics there is a temperature
T,-range 4K < Tg < Tg where E = E(Ty) has a plateau value in the Tg-range and, when T
> Tgj, E =E(T) decreases rapidly with increasing temperature to the end of the
experimental range. The other path is for amorphous plastics where Tg = T =4 K so
that there is no plateau and E(T) decreases rapidly with T from E(4 K). These two paths
appear to predict that amorphous plastics are governed by tcf similar to 10-13 s and
semicrystalline plastics by t. similar to 106 s.

The compensation equation takes the form:
log(t/t)=(AH/4.56)1/T-1/Ty) Equation 1b

where T) is the melting temperature and t is of the order 1076 s as established with high
density polyethylene (HDPE) (6).

We will show that AH is proportional to e for PMMA. We found this to be
supported by Eq. 1a but not by Eq. 1b. ‘
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DATA and RESULTS

The material is Perspex that is a slightly modified PMMA. Read (1) and McCrum
and Morris (7) describe Perspex. In the present note the PMMA tensile creep data is from
the literature by Ogorkiewicz (8). However, most of the tensile creep curves
reconstructed from this data required interpolation to produce adequate data for this note.
In Fig. 1 these tensile creep curves are replotted on a double-log graph and extrapolated
to short times to converge at N, = N(L, €, tcf), independent of temperature, where e
is the elastic strain due to L. independent of temperature. e, = stress / Ej(4 K), where
Eo(4 K)=827x 103 Mpa (1.2 x 106 psi) is the dynamic elastic modulus (4) (5). With
each L, we produced a set of converging creep curves. We may consider each curve
(with a distinct constant temperature) of a set, as emanating from the point N, belonging
to the set.

In Fig. 1, a set of tensile creep curves, under constant L, with each curve of the
set a distinct isotherm, consists of engineering tensile creep strains e associated with t, T
points. A selected subset of such t, T points will intercept a constant-strain segment. We
subtend each of the selected subsets of t, T points in Fig. 1 by a pair of vertical lines that in
turn subtend three individual constant-strain segments. We produced each constant-
strain segment under a different L,. The selected sets of t,T points in Fig. | correspond to
those in Fig. 2. In Fig. 2, a constant-AH segment is proportional to a constant slope that
obeys Eq. la in which t replaces 1. The enhanced bold-line segments (drawn between
vertical lines) consist of sets of t, T points. Each set of t,T points in an enhanced segment
has its counterpart in the corresponding selected set of t,T points in Fig. 1. Therefore, in
a set of t, T points--subtended between vertical lines in Fig. 1 and selected to correspond
to an enhanced line in Fig. 2--the three constant-strain segments are associated with a
single constant-AH segment. Apparently the activation energy associated with creep
strain is dependent on the t, T combination (Eq. 1a) and not on the load producing the
strain. That is, AH(t,T) is proportional to all e(t, T) in a t,T interval independent of L.
We show this in Fig. 3. For example, the set of t, T points in the constant-AH segment (=
17.5 keal / mol) between (t],T2) = (3.35 x 10 -12 5, 333 K) and (t5.T) = (1.25 5, 293 K)
in Fig. 2 intercepts the constant-strain segments e = 0.00096, e3 = 0.00303, and e3 =
0.0103 produced by Ly, Lo2, and L3, respectively, in Fig. 1. Each of these strains (due
to its associated L) is proportional to AH = 17.5 kcal / mol in Figs. 2 and 3.

From Figs. 1 and 3, in the case of a constant strain common to several adjacent
creep curve sets, as L, decreases AH increases and vice versa. This is the source of the
statement in Ref. 6 that there is a decrease in AH with increasing load (stress). We can
easily construct this case in Figs. 1, 2 and 3 when two creep curves from adjacent creep
curve sets are in such proximity as to intersect at a common ex = €j(Lg}. T2, tx) =
e2(Lgo2. T}. tx) at the common time ty, where Ly > L), T2 > T and AHp > AH| (see
Fig. 3).




CONCLUSION

We conclude by means of Fig. 2 and Eq. 1a, that we can associate a constant AH
with the total engineering creep strain(s) e from Fig. 1. We denote this by:

AH(t,T) = *nlog[e(Lo. t. T) / eo(Lo)] Equation 2

where *n = n(PMMA) = n, in kcal / mol, varies with load in Fig. 3. With Eq. 2, we may
obtain the slope *n = n(HDPE) for a set of HDPE tensile creep curves from the data at
9.19 MPa in Ref 4.

We found no evidence of a "bump"--as that on the PMMA shear creep curve by
Lethersich shown in Ref. 9--on any tensile creep curves (before or after reproduction on a
double-log graph). (In the elastic and linear viscoelastic range the tensile creep strain is
about 1/3 the shear creep strain at sufficiently large times (10).) Otherwise, the Lethersich
data-—with AH = 18 kcal/mol (calculated with t.r=10"13 s in Eq. 1a) at 300C, 7.3 MPa
and an "average relaxation time of 1 s" (9)---agrees with the corresponding AH for the
present tensile creep data.

Likewise, Read's Fi ‘% 9 (1) relaxation peak value AH(peak) = 16.7 kcal / mol
(calculated with tof= 10-14 5 in Eq. la) at t(peak) = 10-3 s with 333 K and, at t(peak) =
2.86 x 10-2 s with 294 K, is in near agreement with that of the tensile creep AH =175
kcal / mol and the associated t, T points (t = 3.35 x 10-3 s with 333 K and, t = 1.25 s with
293 K). For the associated tensile creep AH and t,T points to agree exactly with those
associated with the relaxation peaks, we would require a tog = 10-14 s in the adjustment of
N, and the origin in Figs. 1 and 2, respectively.

From Fig. 1, we see that the Boltzmann superposition principle holds between like
creep isotherms of sets of isotherms, each set produced by its own L,. While we found
the Boltzmann superposition principle to hold in Fig. I, we preclude the use of time-
temperature superposition on a set of PMMA tensile creep curves below the glass
transition temperature. Such a set of creep isotherms at constant L shows a natural bent
for non-parallelism indicated by their convergence at Ny in Fig. 1. Any correction for
parallelism appears to be an approximation for such cases.

Note that Fig. 2 and Eq. 1a holds for amorphous plastics as in PMMA. We expect
to find the tensile creep curves of these plastits converging to Ng = N(e. tcf), where tef
is similar to 10-13 s. In that case, we expect polycarbonate (PC), for example, to have an
e-AH relation qualitatively similar to that for PMMA but quantitatively different according
to their dynamic elastic moduli at 4 K (4) (5). We found this to be so when we
extrapolated tensile creep curves of PC to short time (unpublished).




For future work, we could use References 4 and S as a guide to examine the
convergence of the creep curves of some of these thermoplastics at t; or ter, and, to
examine the ensuing relation of the activation energy to the creep strain.
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